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We develop a recently proposed model within supersymmetric quantum 
mechanics that puts a group structure on the creation and annihilation operators. 
We apply the scheme to a variety of quantum mechanical problems and work 
out a two-term energy recursion equation when the overall group structure 
is U(1, 1). 

1. I N T R O D U C T I O N  

The p r o b l e m  o f  the  fac tor izab i l i ty  (Lahir i  et al., 1990; Roy  et al., 1991) 
o f  a Sch r6d inge r  H a m i l t o n i a n  and  the exis tence  o f  supe r symme t ry  (SUSY)  
in q u a n t u m  mechan i ca l  systems are  re la ted.  I nde e d ,  i f  we are able  to fac tor ize  
a H a m i l t o n i a n  for  a g iven po ten t ia l ,  we can i m m e d i a t e l y  cons t ruc t  a pa i r  
o f  H a m i l t o n i a n s  (which  are  supe r symmet r i c  par tners  real ly)  whose  energy 
levels are  in one  to one  co r r e spondence .  The  p r inc ip le  o f  SUSY rela tes  the  
charac te r i s t i cs  o f  a b o s o n  with a f e r m i o n - - i t  was only  in 1981 that  Wi t ten  
(1981) s h o w e d  the re levance  o f  SUSY in q u a n t u m  mechanics .  

To deve lop  a s u p e r s y m m e t r i c  theory ,  one has to define a set o f  super-  
charges  Qi which  obey  the g r aded  a lgebra  

{Qi, Qj}=Hs, [Q,,Hs]=O (1) 

where  i, j = 1 , . . . ,  N a n d  Hs is the  govern ing  H a mi l t on i a n .  
F o r  N = 2 the l inear  combina t ions  Q = (Ql +iQ2)/2 and  Q+ = 

( Q I -  iQ2)/2 t ransform the a lgebra  (1) into 

[Q,Q+]=Hs,  Q2=(Q+)2=[Q, Hs]=[Q+,Hs[=O (2) 

We refer  to (2) as the bas ic  s t ructure  for  the  N = 2 supe r symmet r i c  q u a n t u m  
mechan ics .  
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To realize (2) in physical systems, we have to introduce a pair of linear 
differential operators (A, A +) in terms of which Q and Q+ read 

Q = ( 0  0 A) ,  Q+=(A0+ 00) (3) 

The above choice brings out the nilpotent character of Q and Q+: Q2= 
(Q+)2=0. 

Given (3), the supersymmetric Hamiltonian Hs may be expressed in a 
matrix form 

Hs=(AA  + A O A ) = ( H _  O+)  (4) 

The eigenfunctions of H+ and H_ satisfy 

H+In)= E, In),  H_[n-1)= E, In-1 ) (5) 

If the ground state 10) (n = 0) is nondegenerate, then SUSY is said to 
be unbroken. One may chose [0) to be associated with H+. For higher values 
of n we get a supersymmetric spectrum, the eigenvalues of which are paired. 

The simple choice 

(6) 

leads to a one-dimensional supersymmetric formulation which consists of 
the following pair of Hamiltonians: 

H+ = -0~  + W 2-  W' 
(7) 

H_ = -02~+ W2+ W' 

where the prime denotes derivatives with respect to x. The function W(x) 
in (6) is referred to as the superpotential. 

The supersymmetric Hamiltonian Hs is connected to the SchrSdinger 
Hamiltonian through the solution of a nonlinear equation of the Riccati 
type, V - E o  = �89 W 2 -  W'), where E0 is the lowest energy level. 

Let us further note that the operators A and A + obey 

d 2 
- - -  W 2 (8a) {A, A +} = dx2 + 

dw 
[ a ,  a +] - (8b)  

dx 

Actually, as pointed out by Jannussis et aL (1990), the set of relations 
(6)-(8) constitute a particular case of the Lie-admissible aspect of Santilli's 
(1979) theory. 
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Recently, Lahiri et al. (LRB) (1988) considered the interesting possibil- 
ity of  imposing a four-parameter  group structure on the raising and lowering 
operators A and A § To this end, the following representations were chosen: 

A = e x p ( i y ) [ k ( x )  Ox - i k ' ( x )  Oy+ u(x)]  
(9) 

A +=  e x p ( - i y ) [ - k ( x )  O x -  i k ' ( x )  Oy + u(x)]  

where k ( x )  and u ( x )  are arbitrary functions of  x. Note that the presence 
of an additional parameter  y in (9) facilitates the closing of A and A § with 

A 3 = - i  Oy, [A, A +] = - 2 a A 3  - bI, [A3, A] = A, [A3, A +] = - A  + 
(10) 

In (10) the functions a and b are related to k ( x )  and u ( x )  through 

a = k'2(x) - K ( x ) k " ( x )  
(11) 

b = 2[ k ' (x)  u (x )  - k ( x )  u ' ( x ) ]  

LRB emphasized that y is to be looked upon as an auxiliary parameter  
and not to be confused with an extra spatial dimension. This means that 
for a physical eigenvalue problem the square of  the modulus of  the eigen- 
function must be independent  of  y. 

In the spirit of  equation (8a) the Hamiltonian in their scheme was 
proposed to be (Lahiri et al., 1988) 

H = -�89 A +} = - K  2 02x q- (U --  ik' Oy)  2 --  ik 'u  Oy (12) 

The partner  Hamiltonians H+ and H_ in this version of supersymmetric 
theory read 

H+ = A + A  

= - K  2 0 x 2 +  ikk" Oy - k u ' +  k 'u  + (u  - ik'  Oy) 2 

+ uk  Ox - ik '20y - ik 'u  Oy 
(13) 

H _  = A A  § 

= - K  2 0 x  2 - ikk" Oy + k u ' -  k ' u  + (u  - ik' Oy) 2 

- u k  Ox + ik '20y - ik 'u  Oy 

It may be remarked that the above scenario reduces to Witten's scheme by 
going over to a = 0 (k = 1), b = - W', and u =�89 and ignoring the auxiliary 
parameter.  

The model  of  LRB has been looked into by Jannussis et al. (1990), 
who have studied the Hamil tonian H in (12) to derive a two-term recursion 
equation involving the energy eigenvalue (we shall return to this point later). 
More recently, Chuan (1990) has proposed a set of  coupled equations, a 
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particular class of  which yields the scheme of LRB. The purpose of this 
work is to pursue this scheme in greater detail and show that for various 
choices of  u(x) ,  one can establish contact with a variety of  quantum 
mechanical  systems, such as the box problem, the Morse and Coulomb 
potentials, and also the isotropic oscillator. The possibility of  linking (12) 
to the infinite-deep-well problem has already been considered by Lahiri et 
al. (1988); it corresponds to the simplest case when u ( x ) =  0. In this paper  
we also show that owing to errors present in some of the equations in Lahiri 
et al. (1988), the solutions of  Jannussis et al. (1990) call for a reinvestigation. 
This we shall take up in the concluding portions of  the paper. 

2. P A R T I C L E  IN A BOX 

Setting u ( x ) = t a n  x and k ( x ) =  1 in the scheme (13), we get 

a = exp(iy) (Ox + t a n  x) 

a + = e x p ( - i y )  ( - 0 x  + t a n  x) 

The above pair give 

(14) 

H+  = A + A  = -(72 x -  1 (15a) 

for -oo < W ( x )  < oo, -~-[2 < x < ~-12, along with the supersymmetric partner 

H_ = A A  + = -ogx + (sec 2 x + t a n  2 x) (15b) 

It should be remarked that SUSY relates the spectra of  H+ and H_ 
through E(_ ") = E(+ n+l), n = 0, 1, 2 , . . . .  Further, the eigenfunctions and eigen- 
values of  H§ are given by (Filho, 1990) 

~'(2/~') 1/2 si n nx; n even 

O+'"(x)=[(2/~r)l /Z nx; n odd (16) 

E(+ n)= n 2 -  1; n = 1, 2, 3 , . . .  

One can verify that the above steps constitute supersymmetrization of the 
"particle in a box"  problem. With H+ given by (15a), the SchrSdinger 
potential corresponds to v ( x ) =  0 for Ixl < ~ / 2  and v ( x ) =  ~ for x = w/2. 

The eigenvalue spectrum is E (n) = n 2, n = 1, 2 , . . . ,  and the ground state 
has a cos x form. 

A few words about  the new potential generated in (13): As empha- 
sized by Sukumar (1985), one can construct a hierarchy of potentials by 
repeatedly factorizing the Hamiltonian once we get to (15a). Indeed in 
this way the adjacent members of the hierarchy do turn out to supersym- 
metric partners. Thus for the system (15b) a series of sec 2 x potentials is 
generated whose spectrum can be readily calculated. 
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3. MORSE POTENTIAL 

Fixing K = 1 is consistent with a = 0. Setting 

e x  u =--+(�89 ~) 
n 

we arrive at 

A + = e x p ( _ i y ) { _ O  x [ e x  t 

are 

895 

(17) 

(18) 

So the partner Hamiltonians H+ and H_ in the supersymmetric theory 

2 x  

H+ = A + A = - 0 ~  + ~nT-  2e  x + ( �89  n )2 (19a) 

e 2x 2 e  x 

H _  = A A  + = -02 + 7 + ~ -  (1 - n )+  (1_ n)2 (19b) 

On the other hand, using the form (12), the Hamiltonian becomes 

_02 ['e 2x 2 LT+n eX(1- n) + (~- n)2]} (on = E . & .  (20) 

We are thus led to a Morse potential whose partners are given by the 
components in (19a) and (19b). Typically the Morse potential is 

V = K  e x p ( ~  -~) - 2 k  e x p ( x )  (21) 

whose spectrum is (Lahiri et al., 1990; Sukumar, 1985) 

E(,) _ - a  2 a ( n + � 8 9  2(n+�89 2 
2a 2 -t a2 a2 (22a) 

where n = 0, 1 , . . . ,  N -  1 and support N bound states. Note that in the 
above a = a ( 2k )  1/2 and N is the largest integer less than (~+�89 The 
ground-state wave function is 

 exp(  22b, 
As in the "particle in a box" problem, here also one can construct a chain 
of potentials from (18). The ( N +  1 )-member hierarchy is found to corre- 
spond to a set of Morse potentials. 
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4. C O U L O M B  P R O B L E M  

The radial equation of the Coulomb problem is (Lahiri et al., 1990) 

d 2 2 1(1+ 1)\ 
- 2En - r +---7F - - )  x~, = 0 (23) 

where n and I are the principal and angular momentum quantum numbers, 
respectively. 

Further, x,z(0) = 0, E, = -1/(2n2) ,  r = �89 Z is the nuclear charge, 
and r e (0, x) is the radial coordinate. 

Making the transformation x = l n  r and redefining x , t ( r )= eXl21~b(x) 
brings (23) to the following form: 

d 2 
(l+�89 ~b(x) = 0 (24) [ - ~ x 2 -  2E, - 2  eX+ e 2x 

Incidentally, the Hamiltonian of the system (24) coincides with the 
form in (19a), which in turn is consistent with the choice of u made in (17). 

From (24), we identify the superpotential W(x)  to be 
x 

W ( x )  = e +  (�89 n) (25) 
n 

It leads to the pair 

V+ = e2~/ n 2 -  2eX + (�89 - n) 2 (26a) 

V_ = e2X/n 2 - 2 ( I -  I / n )  e 2x q- (�89 (26b) 

Transforming back to the variable r, the form (26b) gives the supersym- 
metric partner to (23), 

I d 1 [ 1 \  l + ~ ] / n , ( r )  = 0 
- ~ r 2 + ~ - ~ - 2 [ 1 - n )  (27) 

Interpreting ( 1 - 1 / n ) r  as the running variable by dividing (27) by 
( 1  - -  l / n )  2, we see (Haymaker and Rau, 1986; see also Kostelecky and Nieto, 
1985) that (27) describes the state's nuclear charge Z ( 1 - 1 / n ) .  Thus the 
degeneracy arises between states of the same l but different n and Z. 

5. ISOTROPIC OSCILLATOR 

K =  1 and u ( x ) = [ e X / 2 - ( n + l ) / 2 ]  in the representation Setting 
(9) yields .gl)] 

x n2 ] (28) 
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These give 

2x 

2 e 1 +3)eX+�88189 (29a) H + =  - O x + ~ - - 5 ( n  

2x 

H _ = - O x + ~ - - 5 ( n 2  e 1 _�89189 (29b) 

Further, from equation (12) we deduce 

02~bnt- e l x 1 1 I 2 
Ox 2 ~ - - ~ e  ( n + ~ ) + a ( n + i )  qS.=E.4~. (29c) 

Now the radial equation for the isotropic oscillator is 

1 d2 , 2 1(1+1) ] 
-~-~r2+~r -b r2 E, x, ,(r)=O (30) 

where n = 1 + 2 , . . . .  Transforming (30) to the full line by the change of 
variable x = 2 In r and putting xnl(r)= eX/40(x) gives 

I-d 2+ 2X-~Ene + a ( l + ~ ) l t h ( x )  0 dx 2 4 e  1 x 1 1 2 = (31) 

We see that the Hamiltonian implied by (19) exactly coincides with 
(29a). Certainly the supersymmetric system (29) is a particfilar case of the 
model (12) and (13). 

From (31) the superpotential may be identified to be (Lahiri et al., 
1990) W(x)  x l * = e - 5 ( n + 5 ) ,  leading to 

v+ = �88 2x - �89  x + J(n +�89 
(32) 

V_ = �88 2x - l ( n  -�89 x +�88 +�89 

Taking V_ to the half-line, we find that the partner equation turns out 
to be 

- -  r 2 [-- dr 2d2 + +~+2(2-En)]xnl(r)=O ( 3 3 )  

We thus see that SUSY gives rise to degeneracies (Haymaker and Rau, 
1986; Kostelecky and Nieto, 1985) with the energy difference between 
equations (30) and (33) being a factor of 2 units as in n = 1, 1 +2,  1 + 4 , . . . .  

Finally, we examine the eigenvalue equation 

Hg(x, y) = Eng(x, y) (34) 

where H is given by the expression (12), g(x, y) = 49,(x) exp(iny), and E~ 
determines the energy spectrum. 
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o r  

Equation (36) when written in full assumes the form 

02 
_ k  2 q~n, dx 2 ~ (u2 + 2nk'u + n2k '2-  E,,)(~,, = 0 (35) 

0 2 
1.2 (~n , 

- ~  -~x2 ~- At,q)n = 0 (36) 

where the n-dependent function Atn is given by 

/~n = u2(x) + 2nk ' ( x )u ( x )  + n2k '2 -  E~ (37) 

In Lahiri et al. (1988) Atn was erroneously written in a somewhat different 
form. 

To solve equation (36), we recognize that when a 2= 1, the operators 
A, A § and A 3 may be identified with the generators of a U(1, 1) group. 
Also in this case one can solve (11) to obtain the solution (Jannussis et al., 
1990) 

sin Atx cos vx 
k (x )  = x; k (x )  - - - ,  k ( x )  = (38) 

At v 

Corresponding to these solutions, equation (36) reads respectively 

d 2 
x2d~qbn+lE :F2nx-x2-n2)~bn=O (39) 

dx 2 ~ n 

sin2 Atx d2ckn [ 2n c~ Atx sin lzx sin2 Atx ] 
2 - -  + En ~ 2 n 2  c 0 S 2 / d , x  (J~n = 0 (40) 

At d x  2 At A t 

c ~  d x  2 [- E , •  s i n v x c ~  c~ v2 (41) 

It may be remarked that equations (40) and (41) have the same spectrum 
of eigenvalues, because for vx -~ vx + ~r/2, equation (41) is transformed into 
equation (40). Further, a comparison between equations (40) and (41) shows 
the presence of  a term •  (odd function of  x) in them. So without restriction 
(Jannussis et al., 1990) we may consider x to be positive. 

Let us take the solution of equation (39) in the form 

~b. (x) = e x p ( -  nx)fn (x)  (42) 

where the function f . ( x )  satisfies 

x2dd~fx~-2nx2dd-~+(E, -n2:g2nx-x2-n2x2) f~(x )=O (43) 
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Fur the r ,  for  f n ( x )  we cons ide r  a p o w e r  series expans ion  

f~(x)  = Y~ csx ~ (44) 
s - - O  

We i m m e d i a t e l y  find tha t  the  coefficients sat isfy the two- te rm recurs ion  

equa t ion  

[ ( p + s ) ( p + s - 1 ) + E . - 2 n 2 - 1 ] c ~  = [ 2 n ( p + s - 1 ) + 2 n ] c ~ _ l  (45) 

F o r  s = 0 we get 

p(p  - 1 )  - l - 2n2= - E n  

o r  
1 1 P = 5 • [ a -  (E .  - 1 - 2n2)] '/2 (46) 

This means  tha t  for s--> s + 1 we can write equa t ion  (45) as 

[ ( p + s ) ( p + s + l ) + E . - 1 - 2 n 2 ] c , . + ~ = 2 n [ ( p + s ) •  (47) 

F r o m  (47) for  s = S and  es # 0 we get 

p = - S T  1 (48) 

cs+m = 0; rn = 1, 2 , . . .  (49) 

In consequence  f rom (46) we have the e igenvalues  

E,,s = - p  (p - 1) + 1 + 2n 2 
(50) 

= - [ ( - S q :  1 ) ( - S q :  1 - 1 ) - ( 1 + 2 n 2 ) ]  

The fo rmu la  o f  the  e igenvalues  (30) for  n = S = 0 gives 
+ 

Eoo = 1 and  Eoo = - 1  (51) 

Tak ing  all the  values  o f  n and  S, we have 

En+s = - [  S ( S  - 1) - (1 +2n2) ]  
(52) 

E ;s = - [ ( S  + 1)(S + 2) - (1 + 2n2)] 

which  impl ies  En+s+2 = E ; , s .  

6. C O N C L U S I O N  

In s u m m a r y ,  we have  cons ide red  some so lvable  po ten t ia l s  wi th in  a 
f r a m e w o r k  o f  s u p e r s y m m e t r i c  q u a n t u m  mechanics .  The m o d e l  we have 
e x p l a i n e d  can  be  de sc r ibed  by  a set o f  c rea t ion  and  ann ih i l a t ion  ope ra to r s  
A and  A + which  a long  with  A 3 sat isfy a f o u r - p a r a m e t e r  g roup  structure.  
Fur ther ,  we have  so lved  an e igenvalue  equa t ion  and  have shown tha t  when  
these  ope ra to r s  c o r r e s p o n d  to the  genera tors  o f  a U(1,  1) g roup ,  a two- te rm 
recurs ion  equa t ion  ( involv ing  the energies  En) is i m m e d i a t e l y  impl ied .  
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